II B.Tech - I Semester–Regular/Supplementary Examinations – November 2017

ELECTRICAL CIRCUIT ANALYSIS - II (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) What is the condition for transfer of maximum power from source to load?
 - b) State Tellegen's theorem.
 - c) Write the relations for open circuit parameters.
 - d) What is the driving point impedance?
 - e) What are the hybrid parameters?
 - f) State final value theorem.
 - g) State the representation of Trigonometric form of Fourier series.
 - h) Define the even function symmetry with examples.
 - i) Define the time constant.
 - j) A dc voltage is applied in RC circuit where $R=10\Omega$ and C=0.02µF. Find the time constant.
 - k) What are the causes of occurring the transients in electrical circuits.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

2. a) Using Superposition theorem, find the current through x-y branch in the circuit of figure 2(a).8 M

b) Find the current flowing through 2Ω resistor in the circuit shown in figure 2(b) and verify the Reciprocity theorem.

8 M

3. Determine the Z-parameters and Y-parameters for the network shown below Figure 3. 16 M

Page **2** of **4**

- 4. a) Find the expression i(t) of series RLC circuit with R= 5 Ω , L= 1H, C= 1/4F, when it is fed by a ramp voltage of 12r(t-2). 8 M
 - b) A voltage $v(t) = 1000 \sin (314t) + 500 \sin (942t + 90^{0})$ is applied to a series combination of a resistance 100Ω and an inductor of 0.5H. Find the RMS value of v(t), i(t). Find the power delivered to the load and hence power factor. 8 M
- 5. a) Derive an expression for the decay current in an RC circuit excited by a unit step voltage. What is the time constant of the circuit?8 M
 - b) For the circuit shown in Figure 5(b) find the expression for transient current when the switch is closed at t = 0. 8 M

6. a) A series RLC circuit, with $R = 5\Omega$, L= 0.1H, and $C = 500\mu$ F, has a sinusoidal voltage source, $v(t)=1000 \sin 250t$. Derive the expression for current and the resulting current if the switch is closed at t=0. 8 M b) A sinusoidal voltage of 12 sin 8t volts is applied at t=0 to a series circuit of R=4 Ω and L =1H. By Laplace transform method determine the circuit current i(t) for t \geq 0. Assume zero initial conditions. 8 M